
International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 820
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Component-based implementation of tool e-
package

Yassine Aarab, Noura Aknin, Abdelhamid Benkaddour

Abstract— We are trying in this article to present the process of development of a prototype application entitled e-package: a tool of
description and packaging of components. We will present the services it offers and its principle operations. As well, we’ll present its
architecture that it integrates a system of indexing and search of XML documents fully configurable. We will present the technological
choices of its implementation.

Index Terms— Component, Components interfaces, Educational Software, Metadata, Mechanisms of composition of components,
Software Components, XML , Warehouse

—————————— ——————————

1 INTRODUCTION
he complexity of the educational requirements imposed
on the development of software a series of demands that
allow them efficiently, with quality and with a reasona-

ble cost-benefit ratio for the development of the industry
and a fair price for the education sector. However, the reality
of educational software development is described as a criti-
cal [1] for various reasons:

• Excessive cost of development, in terms of both res-
sources and time that is difficult to estimate in ad-
vance.

• Poor quality in the development process as well as
of the final product.

• Lack of capacity to adapt to changing requirements,
quickly and efficiently.

To resolve this problem in part the need has arisen to
modify the software development process [2] toward greater
compositional reuse; adopting a model of software devel-
opment based on components.
In this article, we present the case of educational software
called e-package that adapt to new educational require-
ments. Given the problem, attention is drawn to the trans-
formation process using a component-based architecture of
software; indicating their main advantages and limitations
detected in the process.

2 CONTEXT
Our goal is to implement a warehouse of software compo-
nents. For that purpose, we have built a diagram of metada-

ta to describe, a boss to create profiles for applications, and a
generator of interface to build the form of filling of the me-

tadata [3]. All these elements are gathered in a package ECR
(Educational Component Repository). The metadata are
used to find the components, furthermore they must be
attached. Thus, we propose a format of package to exchange
and share software components: E-package. We present,
subsequently, the approach to follow to build this package
and we will provide a prototype tool for metadata and gen-
eration of package.
The package ECR will contain the software components
developed by the Community e-learning. Each package of
component is formed of a body and a description. The body
is composed of executable binary code, the design model,
source code, games testing, documentation, etc. The descrip-
tion contains the metadata defined in the scheme of metada-
ta. Overall, the warehouse is composed of two parts: a cata-
log and a set of software components. The catalog includes
the metadata of the components removed and information
on their location. The components are archived in a file sys-
tem.
To be operational, the warehouse must provide, to its users,
if possible all the following features:

• Identification and description of a software compo-
nent. This information comes from the metadata
and is recorded in the catalog.

• Publication of software entities allowing developers
to insert in the warehouse a new software compo-
nent.

• All course of the catalog allowing users to consult
the description of the software component despo-
sited in the warehouse.

• Recovery of a software component that allows users
to obtain in their work environment a copy of the
body of software component sought.

• Classification and search. In the case of a large
warehouse, the course of sequential catalog is not
enough. It must have the features of text search, by
keyword, and by attributes.

T

————————————————
• Yassine AARAB: currently pursuing phd’s degree program in Abdelmalek

Essaâdi University, Morocco, PH-00212661222241. E-mail: yacino-
rock@gmail.com

• Noura AKNIN is professor at Abdelmalek Essaâdi University, Morocco,.
E-mail: aknin@ieee.com

• Abdelhamid Benkaddour: is professor at Abdelmalek Essaâdi Universi-
ty, Morocco. E-mail : ham.bekaddour@gmail.com

IJSER

http://www.ijser.org/
mailto:aknin@ieee.com

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 821
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

3 THEORETICAL FRAMEWORK
3.1 Model of the descriptor of package

To be treated properly, the contents of the manifest.xml file
must be valid in relation to the model of the descriptor of
given package. The following figure illustrates the structure
(figure 1):

The object element, in this model is a general practitioner. It
is not typed. It is used to declare any object of the package
described by metadata [4]. For the categorization, we must
assign to its attribute one of the following values:

1. “SoftwareComponent” to indicate the object in que-
sion is a software component;

2. “Software” if the object is an exploitable software;
3. “EducationalRessource” if the object is a pedagogi-

cal resource;
4. “LearningObject” if the object is an educational ob-

ject in the common sense of the e-learning commu-
nity;

In addition to this attribute, the object element has two op-
tional attributes (i.e. id and name) to identify it without
going through the metadata.

To reference a metadata file associated with the ob-
ject, it must instantiate the Child element metadataFile. The
latter includes, in addition to the optional attribute id, three
mandatory attributes: type, pathRoot and URL.
The attribute type should, indicate the name of the schema
of metadata used to describe the object. The allowable val-
ues for the moment are: LOM [5] and DublinCore [6]. This
list may evolve to integrate new schema names. The URL of
the schema is located in the root element of the XML docu-
ment containing the metadata.

The attribute pathRoot should, indicate if the URL of the
metadata file is absolute or relative. The possible values are:

5. “This” indicating that the URL is relative to the ma-

nifest.xml file;
6. “package” indicating that the URL is relative to the

root folder of the package;
7. “absolute” indicating that the URL is an absolute

reference;

Finally, the URL attribute should, mention the address of
the metadata file.

As we can see, with the cardinalities of the metadataFile
element, it is possible to describe the same object with sever-
al metadata schemes. Each instance of metadataFile corres-
ponds to a metadata file. The supplier of the component
must ensure the consistency of the values assigned to
attributes with the actual content of each file.

The content has also another optional element allowing
to referencing other resources of the package that are not
accompanied by metadata. The two child elements name
and description allow the indication of what resource it is.
Other resource has the same attributes as the object, with the
exception of several values are not associated to the type
attribute and the attribute URL locates this time the re-
source.

3.2 Build a package: Methodology
There are two ways to build a package: either manually or
with a dedicated tool. In this section, we show the limits of
the manual approach and the need to have a specialized tool
simplifying the task of construction of the ECR.

3.2.1The manual approach
Given the characteristics of the package ECR, it is not very
difficult to build it manually. A simple XML editor and a
compression utility are sufficient to obtain it. This approach
can be used when the task is occasional and there are only
one or two software components in the package, which is
rarely the case in a large project. The major difficulty lies not
in the creation of the package but rather in the filling of me-
tadata. By experience, it quickly becomes tricky to manipu-
late and navigate in an XML document as soon as its size
becomes impressive. From a few hundreds of lines, without
XML editor sophisticated, the document becomes unmana-
geable. However, the schema has a lot of metadata. Its XML
instances are difficult to handle and can easily become aver-
sive to inform even for the more experienced in XML [7].

It is obvious that without the tool of capture of the me-
tadata and packaging, all the experiments that we can plan
are doomed to failure. To succeed in this phase, it must be
put at the disposal of users responsible to describe the soft-
ware components a tool that facilitates their task.

3.2.2 The instrumental approach
This approach is to operate an application to populate the
metadata, build and generate the package ECR. The objec-
tive of this type of tool is to simplify to the maximum the

Fig. 1. Diagram of the model of the descriptor of the ECR pack-
age

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 822
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

phase of description of the components and construction of
the package, decreasing the burden of work for the users.
We developed a tool offering the following features:

• Filling of metadata through forms.
• Construction of the package by adding file or URL

link.
• Provision of a tree view of the package with the fea-

tures CRUD (Create, Read, Update, and Delete).
• Generation and integration of the manifest in the

package.
• Backup and reading of the package in the appropri-

ate format.
• Transfer by Web service of the package to a server.

At the level of forms of filling metadata, we want to

manage the descriptors defined in the application profile.
The objective is twofold: firstly, we want to reduce the bur-
den of description of the components, exploiting the de-
scriptors provided in the model part of the Application Pro-
file. To achieve that, we assign the values by default or the
Association lists of values to some metadata. Secondly, we
want to ensure the control of entered information and deliv-
er presentations tailored to the specialty of the users. The
nature of the Metadata requires, in effect, the participation
of users of different specialties: Designer, assembler, libra-
rian, etc. For each specialty, it must show the appropriate
metadata with adequate instructions. The objective is to
guide users in their task of description without polluting
their interface with unnecessary information and overload-
ing their cognitive effort.

Thanks to this type of tool we hope to offer a quick and
more user-friendly construction of ECR packages. We are
convinced of the need to invest in such projects because we
cannot request from the Community to participate in the
mutualisation of software components without providing
them with the necessary means to achieve this objective.

4 ARCHITECTURE OF E-PACKAGE
In this section, we present the architecture of the tool e-

package that we propose to the community to build its ECR
packages. e-package is an application capable, from the pa-
rameter data, to provide the user with a graphical user inter-
face to populate the metadata and build its package.

E-package is an assembly of three large components. The
first is responsible for building package, the second for pro-
viding the metadata entered by the user in the form of XML
docment and the third for shipping by Web Service a file to
a server.

When we start the application, a parameter file is auto-
matically loaded. The propreties of the structure of the
package are transmitted to the component packageBuilder.
The URL of the metadata application profil is transmitted to
the component IG. The propreties of the Web Connection
Service are transmitted to the WebService Component. Each
component is then responsible to initialize its environment.
The graphical interface is then displayed.

4.1 The packaging

In the inistializing the Component packageBuilder, the
structure of the package is saved in the form of tasks to per-
form during the backup. A graphical presentation of this
structure is presented in the form of a tree. The user has, then,
of the crud features to create directories, add documents or
files savedbon its file system. It also has the possibility to add
URL of documents or files available online. All actions are
saved as tasks to achieve during the backup.

4.1.1 The filling of metadata
This activity is ensured by the component IG [1]. It is in
charge of providing from the information defined in the
Application Profile, the necessary forms to seizure of the
metadata. Through these forms, the user enters the metada-
ta. The information you entered are saved in memory pend-
ing their registration in files.

4.1.2 Generation of the package and transmission to

the server
When the user requests to save the package, a temporary
folder is created in the file system. Directories requested
during the creation of the package are created in the tempo-
rary folder and files are copied there.
 Then, the metadata are stored in XML files under the
folder metadata. The manifest file is subsequently generated
in this same folder. This file are referenced the metadata
files. The objects are referenced in the package and the URLs
of the files and documents are available online.
 The package is finally obtained by Zip compression of
this temporary folder. The user can save locally in assigning
a name or send it to the server.
 If the package was sent to the server, the WebService
component prepares a SOAP message [8]. Then the message
will be forward as attached file in the package and establish-
es a web connection service with the server via the RPC
protocol. The server is supported by the following to receive
the message and store the package in view of its treatment.

5 CONCEPTUAL FRAMEWORK
Below are the main theoretical aspects of the software compo-
nents, which were considered in the development of a version
of e-package based in software components.

5.1 Definition
Although there are a variety of definitions with regard to what
is a software component, there is some consensus to define it
as a set of objects that meet a specific function, specify inter-
faces and operate independently.the software components can
be composed of other components and be used to create soft-
ware systems of greater complexity [9, 10]. Their main charac-
teristics are summarized below [11]:

• Composiion: It is the capacity that allows you to inte-
grate components of greater granularity. To do this,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 823
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

the interactions must occur at the level of component
interfaces.

• Encapsulation: the component must be able to hide
details of its implementationand function as a true
black box.

• Interoperability: The component is interoperable
when it can work independently and can interact
with other components to deploy a functionality of
greater complexity

• Multiplatform: To promote the reuse, it is desirable
that the component can work independently of the
hardwaeand the operating system.

• Auto-content: The component is self contained when
depends at least possible other to fulffil its purpose.
To do this, it must present a low coupling and a high
cohesion.

5.2 Component Interfaces
An essential aspect in the consruction of software component
are the component interfaces (API). These are mechanism that
allows its interoperability [11]. To do this, the component
interfaces present an “interface provides”message that dec-
lares a set of services that the component implements an "in-
terface requires" message that specifies the services required
for the component to operate, declaring a set of events that
the component can issue.

Events enable to communicate a response to an external
stimulus or a change in the internal state of the component.
At the interface of the component we find a symbol which
specifies the event.

5.3 Composition of components
According to Sametinger the composition of components is in
the process of building applications using the interconnection
of software components through their interfaces [12]. Seen in a
practical way, this process can be understood as a client-server
relationship. The client component requests a service that is
offered within the operations defined in the component inter-
face server. Then the server component runs the required
operation and returns the results to the client synchronously.
From the point of view of the interaction between the interfac-
es of the components, three types of composition of compo-
nents can be distinguished.

• Sequential Composition: occurs when there is in-
compatibility between the component interfaces to in-
terconnect. This requires an adapter component to re-
concile these interfaces.

• Hierarchical composition: occurs when a component
performs a request directly to the services provided
by another component, not existing incompatibilities
between them.

• Additive composition: occurs when the interfaces of
two or more components come together to create a
new component of greater granularity.

6 IMPLEMENT OF E-PACKAGE
6.1 Development based in components of software
OMT++ is one of the methodologies of analysis and design
that is Object-oriented, more mature, efficient and widely used
at present for the development of software projects. It aims at
getting the specification, design, and implementation correct
at the outset [13]. Iteration is reduced and maintainability of
documentation is improved by delaying the decisions to the
points where all essential informations are available. This
paper also presents a notation for specifying user interfaces.
 This process presents modifications with respect to the
development of traditional software mainly for the stages of
analysis, design and development.
 In the analysis phase, it is entered the activities of search,
selection and adaptation of existing components for reuse in
the component-oriented development.
 In the design phase component-oriented, introduces a new
phase called Design of interfaces in which clarifies the exis-
tence of interfaces, identifies the interfaces that can be reused
and discovers new interfaces and operations.
 The development phase is divided into the processes of:
development of components and integration of components.
The process of development is performed in the case of exist-
ing resources that are not suitable to be reused and require-
ments that have not been able to be satisfied by the repository.
 The process of integration is done on the basis of a set of
components always trying to maximize its reuse and thus
reduce their number that need to be developed from the start.
To achieve this, it should have repositories that are reusable,
reliable and to act according to their specifications. This inte-
gration is done considering the interfaces of components and
the composition methods already described.

6.1 Development based in components of software
The principles components and their interfaces are deducted
from class diagram at Fig.2:

Once the class diagram was implemented, proceeded to estab-

Fig. 2. Class diagram e-package

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 824
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

lish the set of components that would serve as the building
blocks of the e-package as shown at Fig.3

6.3 Design of e-package interfaces
On the basis of the architectural design, all components im-
plemented and to implement must be accessed through its
interface of components and they will be forced to specify the
following services:

• Start (conf:XML): void: This service allows you to
configure the components contained in e-package us-
ing a configuration in XML format that is broken
down as you go down the granularity of the compo-
nent.

• setSession (session: XML): void, getSession (): XML:
reset (): void: These services allow the handling of the
meetings of the components.

• getId (): INT, getDescription (): String: These servic-
es allow you to identify the components in regard to
your id and description.

• READY_COMPONENT: event that notifies the suc-
cess of the burden of the sub-components of a com-
ponent.

• FAILURE_COMPONENT: event that notifies the
fault of the burden of the sub-components of a com-
ponent.

6.4 Detailed design of e-package
The component e-package is the essential piece of software for
the implementation of the new version of e-package because it
is responsible for loading, configuration and deployment of
others components. In addition, this component interoperates
with the ECR that contains it to support the functionality to
open, save, create, export and print a session are described
below.
The internal modeling of the e-package components is pre-
sented at Fig.4.

and units. For example, write “Temperature (K

6.4 Lists

The mechanism of composition of components is defined by the
service start that is implemented by the class "ControlerEP". This
service receives as a parameter settings in XML format that de-
tails aspects of loading and configuring the components con-
tained in e-package.

Public function Start (conf: XML=""):void{
this.conf = conf;
this.downloadComp();

}
The service start executes the method downloadComp that is
responsible for loading each of the components defined in
the XML configuration. To do so is obtained from the XML
configuration the path of the component and then accesses
the modelEP class to perform the load of the component
from the repository of components.

Private function downloadComp () : void{
 Var path = conf.adress;
 ModelEP.downloadComp (Path);

}

The downloadComp method invokes the method loader who
is responsible for loading the component as a MovieClip ob-
ject.
 Private function downloadComp(path:String){
 loaderContext =new LoaderContext();
 ComponentEpLoader = new Loader();

ComponentEpLoader.load (new URLRequest
(path, loaderContext);
}

The load function performs the burden of packaged compo-
nent within a MovieClip in asynchronous mode. Once the
virtual machine JVM performs the load of the component,
this emits an event that is heard by the class modelEP by de-
fining the listener initHandler.

Fig. 3.Initial component diagram of e-package

Fig. 4.JavaBeans component e-package

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 825
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 Private function initHandler (event:event) :void{
 comp = event.target.content;
 controlerEP.setStrategy (comp);
 }

Once you have loaded the component is made a call to the
method setStrategy which is the placing of two listeners to be
able to handle the load of the components. Then invoked the
service start the component charged delivered as a parameter
the XML settings related to the strategy reader that it imple-
ments.
 Privatefunctoin setStrategy (comp:MovieClip) : void
 {
 This.compActual = comp;

comp.addEventListner;
(“Ready_Component”, exitdownload);
comp.addEventListner;
(“Failure_Component”, downloadErr);
Comp.start (configuration.strategy [with t]);
}

If the components of the strategy reader were loaded success-
fully activates the listener exitodownload, which is responsi-
ble for storing the component in an arrangement of compo-
nents and then continue with the normal loading of the fol-
lowing components defined in the XML configuration.

 Public function exitdownload (e:event) : void{
 arrangeComponent.push (compActual);
 keepDownloadingComponent (true);
 }
In the case of there an error in the loading of the component

of type reader, strategy activates the listener downloadErr
which is responsible to continue with the load of the follow-
ing components.

 Public function downloader (e:Event) : void{
 keepDownloadingComponent (false);

 }

7 CONCLUSION
From the results obtained it was possible to conclude that
the component-oriented development presents several ad-
vantages for the development of educational software, al-
lowing the reuse of software assets, either existing or in the
development of future applications.

References
[1] Butcher, N. (2015). A basic guide to open educational resources

(OER). Commonwealth of Learning, Vancouver and UNESCO.
[2] Barrett, S., Higgins, C., Twomey, C., & Evans, M. (2006).

U.S. Patent No. 7,000,219. Washington, DC: U.S. Patent
and Trademark Office.

[3] Aarab Y, Aknin N, & Benkaddour A. (2016).” Generation System of
Metadata Software Components: A Proposed Architecture”. Proc.
the Mediterranean Conference on Information & Communication
Technologies 2015, Vol. 381 of the series Lecture Notes in Electrical
Engineering,pp313-322.Available.
http://link.springer.com/chapter/10.1007%2F978-3-319-30298-0_33

[4] Foulonneau, M., & Riley, J. (2014).” Metadata for digital
resources: implementation, systems design and interope-

rability”. Elsevier.
[5] Neven, F., & Duval, E. (2002, December). ”Reusable learn-

ing objects: a survey of LOM-based repositories”. Proc.
The tenth ACM international conference on Multimedia
pp. 291-294. ACM

[6] Dublin Core Metadata Initiative. (2014). Dublin core metadata
initiative.

[7] Boberic, D., & Surla, D. (2009).” XML editor for search and
retrieval of bibliographic records” in the Z39. 50 standard.
The Electronic Library, 27(3), pp. 474-495.

[8] Roy, J., & Ramanujan, A. (2001).” Understanding web
services”. IT professional, 3(6), pp. 69-73.

[9] Szyperski C. (1998). Component Software Beyond Object–Oriented Pro-
gramming. Edinburgh Gate: Addison–Wesley.

[10] Broy M., Deimel A., Henn J., Koskimies K., Plasil F., Pomberger G., Pree W.,
Stal M. & Szyperski C. (1998). What characterizes a (software) component?
Software, Concept and Tools. 19(1) pp. 49-56.

[11] Crnkovic I. & Larsonn M. (2002). Building reliable component-based
software systems. Boston: Artech House.

[12] Sametinger J. (1997). “Software Engineering with reusable compo-
nents”. Berlin: Springer-Verlag.
[13] Forsell, M., Halttunen, V., & Ahonen, J. (2000, June). “Use and identi-
fication of components in component-based software development me-
thods”. Int.Conf.Software Reuse. pp. 284-301. Springer Berlin Heidelberg.

 IJSER

http://www.ijser.org/

	1 Introduction
	2 Context
	3 Theoretical framework
	3.1 Model of the descriptor of package
	3.2 Build a package: Methodology
	3.2.1The manual approach
	3.2.2 The instrumental approach

	4 Architecture of e-package
	4.1 The packaging
	4.1.1 The filling of metadata
	4.1.2 Generation of the package and transmission to the server

	5 Conceptual framework
	5.1 Definition
	5.2 Component Interfaces
	5.3 Composition of components

	6 implement of e-package
	6.1 Development based in components of software
	6.1 Development based in components of software
	6.3 Design of e-package interfaces
	6.4 Detailed design of e-package
	6.4 Lists

	Conclusion

